Preparation for MHD Testing

April 15, 2002

M. Ulrickson ALPS Meeting La Jolla, CA

Outline

- LIMITS Liquid Metal Integrated Test System
- Magnetic Fields in NSTX (new cases)
- Magnet Design
- Status of Fabrication

Laboratory Studies of MHD Effects

- Because of the urgent need for experiments to validate the MHD modeling of flowing free surface liquids, we have constructed two new experimental devices (LIMITS and MTOR)
- MTOR is a toroidal coil facility constructed from the TARA coils. Initial experiments on liquid Ga have started in the last month at UCLA.
- LIMITS is a permanent magnet system with flowing Li at Sandia. Experiments will start within the next month.

New LIMITS

- Liquid Metal Integrated Test System
- 15 gpm liquid metal flow loop
- Test chamber with either magnet system for MHD testing or electron beam for HHF testing.
- All hardware completed and final commissioning in progress.
- Full diagnostics set: flow, delta P, delta T, surface T, etc.

LIMITS

- LIMITS pump mounted on the furnace for melting Li
- Furnace heaters are mounted
- Temporary flow lines are attached for flow testing of the pump
- The cooling lines for the motor are not connected in this photo

New NSTX Plasma Equilibria

- Two cases were provided by Bob Kaita
 - Lower single null, low beta plasma
 - Lower single null, high beta plasma
- General observations
 - X-point and strike point move outward slightly as beta increases (few cm)
 - Even the 10 cm flux surface fits easily on the outer divertor plate
 - There is room for both nozzles and catchers

Magnetic Fields in NSTX (new cases)

NSTX Divertor Plate Detail

- Distance is measured from the outside toward the inside along the divertor plate.
- The surface normal to the divertor plate is calculated from the shape of the plate.

Field Line Plot High Beta

- The upper x-point is substantially outside the lower x-point
- This plot does not have the same scale on both axes
- This information will be posted on the Sandia FTP site.

Field Line Plot Low Beta

 Note the field lines in the divertor region are closer together than for the high beta case.

Poloidal Field Normal to Flow

Gradient of Normal Field Component

NSTX Toroidal Field at Divertor

NSTX Toroidal Field Gradient (Divertor)

Magnet Design

Magnet Design

- An iron yoke magnet was designed with replaceable pole tips to allow a range of field configurations was designed.
- The basic features of the design are shown in the next slide.
- The magnet is compatible with the LIMITS chamber.

Analysis Of Magnet Geometry

- The code PC Opera was used to design the shape and spacing of the magnet to be used for MHD studies
- The field strength in the gap was computed for a range of magnet gaps and tilt of the pole faces (the geometry is shown in the next figure).
- The correlation of field strength with geometry was determined.
- The gap and angle needed to reproduce the NSTX fields are varied along the depth of the magnet.

Magnet Design For MHD Testing

Magnet Geometry

Field in Magnet Gap

Correlation of Normal Field With Angle

Field Versus Magnet Gap

Pole Tip Design For NSTX

Magnet Geometry Options

- Additional pole tips were designed for:
 - Uniform field
 - Just a gradient in the transverse field
 - Just a linear variation in the normal field
 - Reversal of the normal field
 - And others as needed
- Enough iron was purchased to make many more sets of pole tips

Status of Fabrication

- Vendor selected
- Purchase order placed in late March
- Iron delivery 4-6 weeks
- Fabrication about 6 weeks

